1,005 research outputs found

    Long-term stabilization of the length of an optical reference cavity

    Full text link
    To obtain a high degree of long-term length stabilisation of an optical reference cavity, its free-spectral range is locked by means of an accurate and stable frequency synthesizer. The locking scheme is twofold: a laser is locked on the Nth^{th} mode of a reference Fabry-Perot cavity and part of the laser light is shifted in frequency to be in resonance with the (N+1)th^{th} mode of the cavity. This shift is generated by an acousto-optical modulator (AOM) mounted in a double-pass scheme, matching half of the free spectral range of the reference cavity. The resulting absolute stabilization of the length of the cavity reaches the 1011^{-11} level per second, limited by the lock transfer properties and the frequency stability of the AOM control synthesizer

    An Area-Aggregated Dynamic Traffic Simulation Model

    Get PDF
    Microscopic and macroscopic dynamic traffic models not fast enough to run in an optimization loop to coordinate traffic measures over areas of twice a trip length (50x50 km). Moreover, in strategic planning there are models with a spatial high level of detail, but lacking the features of traffic dynamics. This paper introduces the Network Transmission Model (NTM), a model based on areas, exploiting the Macroscopic or Network Fundamental Diagram (NFD). For the first time, a full operational model is proposed which can be implemented in a network divided into multiple subnetworks, and the physical properties of spillback of traffic jams for subnetwork to subnetwork is ensured. The proposed model calculates the traffic flow between to cell as the minimum of the demand in the origin cell and the supply in the destination cell. The demand first increasing and then decreasing as function of the accumulation in the cell; the supply is first constant and then decreasing as function of the accumulation. Moreover, demand over the boundaries of two cells is restricted by a capacity. This system ensures that traffic characteristics move forward in free flow, congestion moves backward and the NFD is conserved. Adding the capacity gives qualitatively reasonable effects of inhomogeneity. The model applied on a test case with multiple destinations, and re-routing and perimeter control are tested as control measures

    Ultracold mixtures of metastable He and Rb: scattering lengths from ab initio calculations and thermalization measurements

    Full text link
    We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet 4^4He and 87^{87}Rb in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+174+1a_{4+87}=+17^{+1}_{-4} a0a_0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.Comment: 11 pages, 11 figures, accepted for publication in Phys. Rev.

    272 Satisfaction survey concerning vibrating mesh-nebulizer in CF patients

    Get PDF

    Magnetically Controlled Exchange Process in an Ultracold Atom-Dimer Mixture

    Full text link
    We report on the observation of an elementary exchange process in an optically trapped ultracold sample of atoms and Feshbach molecules. We can magnetically control the energetic nature of the process and tune it from endoergic to exoergic, enabling the observation of a pronounced threshold behavior. In contrast to relaxation to more deeply bound molecular states, the exchange process does not lead to trap loss. We find excellent agreement between our experimental observations and calculations based on the solutions of three-body Schr\"odinger equation in the adiabatic hyperspherical representation. The high efficiency of the exchange process is explained by the halo character of both the initial and final molecular states.Comment: 4 pages, 4 figure

    Ion dynamics in a linear radio-frequency trap with a single cooling laser

    Full text link
    We analyse the possibility of cooling ions with a single laser beam, due to the coupling between the three components of their motion induced by the Coulomb interaction. For this purpose, we numerically study the dynamics of ion clouds of up to 140 particles, trapped in a linear quadrupole potential and cooled with a laser beam propagating in the radial plane. We use Molecular Dynamics simulations and model the laser cooling by a stochastic process. For each component of the motion, we systematically study the dependence of the temperature with the anisotropy of the trapping potential. Results obtained using the full radio-frequency (rf) potential are compared to those of the corresponding pseudo-potential. In the rf case, the rotation symmetry of the potential has to be broken to keep ions inside the trap. Then, as for the pseudo-potential case, we show that the efficiency of the Coulomb coupling to thermalize the components of motion depends on the geometrical configuration of the cloud. Coulomb coupling appears to be not efficient when the ions organise as a line or a pancake and the three components of motion reach the same temperature only if the cloud extends in three dimensions

    Spectroscopy of Ultracold, Trapped Cesium Feshbach Molecules

    Full text link
    We explore the rich internal structure of Cs_2 Feshbach molecules. Pure ultracold molecular samples are prepared in a CO_2-laser trap, and a multitude of weakly bound states is populated by elaborate magnetic-field ramping techniques. Our methods use different Feshbach resonances as input ports and various internal level crossings for controlled state transfer. We populate higher partial-wave states of up to eight units of rotational angular momentum (l-wave states). We investigate the molecular structure by measurements of the magnetic moments for various states. Avoided level crossings between different molecular states are characterized through the changes in magnetic moment and by a Landau-Zener tunneling method. Based on microwave spectroscopy, we present a precise measurement of the magnetic-field dependent binding energy of the weakly bound s-wave state that is responsible for the large background scattering length of Cs. This state is of particular interest because of its quantum-halo character.Comment: 15 pages, 12 figures, 4 table
    corecore